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Abstract

A fully nonlinear 2-D s-transformed finite difference solver has been developed based on inviscid flow equations in

rectangular tanks. The fluid equations are coupled to a linear elastic support structure. Nonoverturning sloshing

motions are simulated during structural vibration cycles at and outside resonance. The wave tank acts as a tuned liquid

damper (TLD). The TLD response is highly nonlinear when large liquid sloshing occurs. The solver is valid at any water

depth except for small depth when shallow water waves and viscous effects would become important. Results of liquid

sloshing induced by horizontal base excitations are presented for small to steep nonbreaking waves at tank aspect

ratios, depth to length, h/b of 0.5, 0.25 and 0.125, representing deep to near shallow water cases. The effectiveness of the

TLD is discussed through predictions of coupling frequencies and response of the tank-structural system for different

tank sizes and mass ratios between fluid and structure. An effective tank-structural system typically displays two

distinct frequencies with reduced structural response (e.g., h=b ¼ 0:5). These eigenfrequencies differ considerably from
their noninteracting values. Hardening or softening spring behavior of the fluid, known to be present in solutions of

pure sloshing motion in tanks, does not exists in the coupled system response. Strongest interactions occur with only

one dominating sloshing mode when the nth sloshing frequency is close to the natural frequency of the structure, as the

mass ratio between fluid and structure m! 0: Inclusion of higher modes reduces the efficiency of the TLD. Good
agreement is achieved between the numerical model and a first-order potential theory approximation outside the

resonance region when the unsteady sloshing motions remain small. When the free-surface amplitudes become large in

the coupled system, the numerical peaks are larger and the troughs become lower as time evolves (typical nonlinear

effects) compared to the linear solution. Nonlinearities were found to reduce the system displacement significantly, e.g.,

system resonance shifted to beating response, compared to linear predictions. It was also found that the system response

is extremely sensitive to small changes in forcing frequency. In conclusion, if strong interaction exists, the coupled

system exhibits nonlinearity in structural and free-surface response, but the coupled eigenfrequencies compare well with

the linear predictions. Furthermore, the solver removes the need for free-surface smoothing for the cases considered

herein (maximum wave steepness of 1.2). The numerical model provides a quick and accurate way of determining

system eigenfrequencies which can be hard to identify and interpret in physical experiments.
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1. Introduction

For some large structures, structural damping alone has been insufficient to limit the dynamic motions to acceptable

levels for serviceability considerations, as described in the review paper by Kareem et al. (1999). Thus, auxiliary

dampers have been added. There exists a variety of different means of providing damping including the use of

magnetorheological and electrorheological fluid dampers, as described by, e.g., Soong and Spencer (2002). Designers

are faced with the task of understanding complex fluid–structure interaction when attempting to estimate energy

dissipation performance of, for example, tuned sloshing dampers. To this end, numerical wave tank studies can provide

useful information on the free-surface motions, resonant frequencies, etc., which can be hard to identify and interpret in

physical experiments.

In this study, a 2-D rectangular numerical wave tank is coupled to an elastic support structure and acts

as a tuned liquid damper (TLD). A TLD is tuned/designed to slosh at or near the natural frequency of

the structure. When a structure with a TLD begins to sway due to external dynamic excitation, the fluid of the tank

moves. The sloshing motion of the fluid modifies the global response of the structure resulting in a shift of the natural

frequencies and a reduction of the structural displacements. The system response becomes highly nonlinear when the

steepness of the free-surface grows. Approximate solutions cannot capture the nonlinearity at the free-surface

accurately and thus the use of a fully nonlinear numerical model becomes advantageous in getting insight into TLD

performance.

Traditionally, tuned mass dampers (TMD) have been used to suppress structural motion. From the theory

of Den Hartog (1984), it is known that a TMD will only suppress structural motions at one frequency efficiently

which makes this damping device less attractive when the load is associated with broad-banded spectra

(e.g., wind, waves, earthquakes). In this case, TLDs are more attractive in the sense that they can be designed to

suppress a range of unwanted frequencies. Other advantages of using TLDs are: easy adjustment of natural frequencies,

low cost and maintenance, suitability for temporary use, etc. However, an adverse effect can occur if the

wave motions do not diminish immediately after the cessation of the excitation, as some of the energy absorbed

by the TLD is transferred back to the structure (Fujino et al., 1988). To mitigate this behavior, investigators have

studied various options for improvement, for example, sloped bottom TLDs. This type of TLD was analyzed by

Gardarsson et al. (2001) who studied sloshing motion in a tank with 30� sloped sides. This specific configuration

resulted in softening the spring characteristic of the free-surface elevation due to nonlinear effects of wave runup onto

the sloped surfaces.

TMDs are still the most commonly used devices in practice. However, innovative applications using liquid

as a means of damping have been used in ship design and satellite stabilization (Abramson, 1966).

Also, TLDs previously have also been used on offshore platforms (maybe not always intentionally), as

described by, e.g., Vandiver and Mitone (1979) who developed an analytical TLD model. Also, water inside

structural members of offshore platforms is another practical means of taking advantage of TLD behavior

(e.g., the Chevron ALBA North Sea platform). Recently, water inside the single shaft of the 251m deep

Draugen gravity platform was used as a means of providing damping. Important studies were undertaken by Drake

(1999) on sloshing interactions with multiple risers inside the shaft. These investigations were triggered by the

occurrence of troublesome ringing excitation of the platform. Suppressing vibrations in towers or tall buildings

due to along-wind or cross-wind forces are more recent examples where a TLD may prove to be an efficient type of

vibration absorber.

Before reviewing work done on TLDs, it should be noted that the majority of investigations of predictions of sloshing

motion in tanks have primarily been carried out without the coupling of the elastic structural support. Pure sloshing

motion studies have been undertaken with fixed or prescribed base motions. The approaches used have involved

experimental, theoretical and numerical work. Further details on sloshing studies are given in the extensive review by

Ibrahim et al. (2001).

Approaches to the TLD problem have been principally experimental. Usually the system response in terms of

structural displacements and associated system eigenfrequencies are reported. The literature does not reveal evidence on

how the free surface behaves when coupled to the structure. The numerical fluid-structural solver presented herein is

motivated by this fact. In order to explain the TLD performance, simultaneous coupled response of the free surface and

structural response is emphasized.

TLD-structural model-scale experiments have been carried out by several investigators, e.g., Case et al. (2001),

Vickery et al. (2001), etc. Some full-scale studies have also been undertaken, e.g., Fediw et al. (1993). Furthermore,

important findings have been reported by Fujino et al. (1988) who identified that breaking surface waves are a major

mechanism of energy dissipation compared to liquid viscosity and container bottom roughness. Sun and Fujino (1994)

developed an analytical TLD model based on shallow water equations where wave breaking was accounted for through
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a parameter derived from physical experiments. Most models are based on shallow water equations and most

investigations are done on sloshing in rectangular tanks.

Some numerical TLD studies have been done using finite elements on moving grids based on the Arbitrary

Lagrangian Eulerian formulation, e.g., Nomura (1994), Yamamoto and Kawahara (1999). Numerical instability

problems at the free surface were reported by Yamamoto and Kawahara (1999) and their results included smoothing

functions. Pure sloshing motion studies show that it is essential to describe the nonlinear free-surface behavior

accurately in order to know if the TLD is working. Moreover, the free-surface motions are extremely sensitive to small

changes in forcing frequency, e.g., Frandsen (2004). The ratios between fluid-to-structural mass, water depth and tank

size are other important parameters in these studies.

This study presents a fully nonlinear coupled free-surface structural model. The fluid motion is described by

nonlinear potential flow equations allowing steep nonoverturning waves to be captured. Two-dimensional

solutions are obtained using a finite-difference time-stepping scheme on adaptively mapped grids. The fluid model is

coupled to an elastic support structure, and extends the pure tank sloshing studies of Frandsen (2004). To the best

knowledge of the author, this type of model has not been developed for investigations of TLD performance. The

numerical model provides a quick and accurate way of determining system eigenfrequencies which can be hard to

identify and interpret in physical experiments. In this study, sloshing motions are simulated during structural vibrations

subjected to an external time-varying horizontal force. It should be noted that, if the tank size is large enough, the

effects of viscosity and surface tension can be neglected and the energy dissipation will be caused by wave breaking only.

As described, the fluid model herein applies to application of small to steep waves, which is desirable for many

structural systems in which fatigue loading is of a concern. The solver is valid at any water depth, except for smaller

depths when shallow water waves and viscous effects would become important. The effectiveness of the TLD is

discussed through prediction of coupling frequencies and response of the tank-structural system for different tank sizes,

mass ratio between fluid and structure and tuning ratio. The solver removes the need for free-surface smoothing for the

cases considered herein.
2. Problem formulation

Investigations of the interaction between a generic horizontally excited structure and 2-D nonlinear motion of liquid

in tanks are undertaken. Consider the system schematically shown on Fig. 1. A structure with mass m̂; damping ĉ and

stiffness k̂ has an attached 2-D rectangular water tank of width b̂ and depth ĥ: Hats denote dimensional variables. The
rectangular Cartesian coordinate system ðx̂; ẑÞ has its origin on the left wall of the tank with vertical ẑ-axis and x̂-axis

located on the undisturbed water level. The system is exposed to a unsteady horizontal force F̂ ðt̂Þ: It is assumed that the
fluid motion in the tank can be described by the Laplace equation for the velocity potential f̂; together with no-flow
boundary conditions on the rigid surfaces as well as dynamic and kinematic boundary conditions on the free water

surface ẑ ¼ ẑðx̂; t̂Þ:
First, the nondimensional variables are defined as

ðx̂; ẑÞ ¼ L̂ðx; zÞ; ẑ ¼ âz; X̂ ¼ âX ;

t̂ ¼ ðL̂=ĝÞ1=2t; f̂ ¼ âðL̂ĝÞ1=2f;
(2.1)

where L̂ is the characteristic linear size of the problem (herein chosen as the tank width b̂), â is the characteristic

amplitude of the motion, ĝ is the acceleration due to gravity and X̂ ðt̂Þ represents the motion of the coupled system.
z

xbO

m

−h

F(t)
c

k

Fig. 1. The coupled system.
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The problem formulation in non-dimensional form in a moving coordinate system ðx; zÞ can now be written as

rf ¼ 0;
@f
@x
¼ 0

����
x¼0;b

;
@f
@z
¼ 0

����
z¼�h

;

@z
@t
�

@f
@z
þ e

@f
@x

@z
@x
¼ 0

����
z¼ez

;

@f
@t
¼ �z� xX 00ðtÞ � e

1

2
ðrfÞ2

����
z¼ez

:

(2.2)

There is an extra term in the surface dynamic condition due to the acceleration of the coordinate system, and e ¼ â=L̂:
The horizontal acceleration of the tank X 00ðtÞ is generated by the motion of the structure and is found from the equation

of motion of the coupled system,

m̂X̂
00
ðt̂Þ þ ĉX̂

0
ðt̂Þ þ k̂X̂ ðt̂Þ ¼ F̂ ðt̂Þ þ F̂ I ðt̂Þ;

where F̂ I ðt̂Þ is the horizontal force component applied to the structure by the water in the tank. It can be found by

integrating the pressure over the vertical tank walls,

F̂ I ðt̂Þ ¼

Z ẑðx̂;t̂Þ

�ĥ

p̂ðx̂; ẑ; t̂Þdẑ

�����
x̂¼b̂

x̂¼0

:

Introducing the nondimensional pressure and the internal force as follows, we have

p̂ ¼ r̂ĝL̂p; F̂ I ¼ r̂ĝâL̂FI ;

where r̂ is the liquid density. Using the unsteady Bernoulli equation,

p̂

r̂
¼ �ĝẑ� x̂X̂

00
ðt̂Þ �

@f̂
@t̂
�
1

2
ðrf̂Þ2;

the nondimensional internal force can be expressed in the following form:

FI ¼

Z ezðx;tÞ

�h

@f
@t
þ e

1

2
ðrfÞ2Þ

� �
dz

����
x¼0

x¼b

þ e
1

2
ðzð0; tÞ2 � zðb; tÞ2Þ � ðbhþ ezðb; tÞÞX 00ðtÞ: (2.3)

Next, introducing the characteristic amplitude of the external force ÂF : F̂ ¼ ÂF F ; the amplitude of the motion is
â ¼ ÂF = ðr̂ ĝ L̂Þ; and the nondimensional form of the equation of motion is

mX 00ðtÞ þ cX 0ðtÞ þ kX ðtÞ ¼ FðtÞ þ FI ðtÞ; (2.4)

where the nondimensional mass, structural damping and stiffness are m ¼ m̂=ðr̂ L̂
2
Þ; c ¼ ĉ=ðr̂ĝ1=2L̂

3=2
Þ; k ¼ k̂=ðr̂ĝL̂Þ:

The internal force can be found by using Eq. (2.3). To complete the formulation, initial conditions are added to (2.2),

(2.3) and (2.4). Initially the structure is assumed to be at rest and the water surface is undisturbed. The associated initial

conditions are

fjt¼0 ¼ 0; zjt¼0 ¼ 0;

X ð0Þ ¼ 0; X 0ð0Þ ¼ 0; X 00ð0Þ ¼ F ð0Þ=m;
(2.5)

where the latter condition translates into zero internal force when the fluid is at rest and therefore only contains a

contribution from the external force.

The parameter e ¼ â=L̂ ¼ ÂF=ðr̂ĝL̂
2
Þ is now recognized as a forcing parameter. Consider the limit of small forcing

e! 0; applying this limit to (2.2)–(2.5), the following linear approximation for the velocity potential and system

displacement X ðtÞ is found,

rf ¼ 0;
@f
@x
¼ 0

����
x¼0;b

;
@f
@z
¼ 0

����
z¼�h

;

@2f
@t2
þ

@f
@z

����
z¼0

¼ �xX 000ðtÞ;

ðmþ bhÞX 00ðtÞ þ cX 0 þ kX ¼ F ðtÞ þ
R 0
�h

@f
@t
dz

����
x¼0

x¼b

:

(2.6)
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The first-order surface elevation can be found as

z ¼ �
@z
@t

����
z¼0

� xX 00ðtÞ;

where (2.5) should be used as initial conditions.
3. Analytical model for linear tank–structure interaction

First, consider linearly behaved motion of the coupled system. The structure is herein represented as a one degree-of-

freedom system (Fig. 1). The linear model describes approximate fluid sloshing motion in the tank, which can be used if

the slope of the free surface @z=@x is small. The general dimensional linear solution for fluid motion in the rectangular

tank can be written by using the natural modes of linear sloshing for the velocity potential,

fðx; z; tÞ ¼
X1
n¼1

coshðknðzþ hÞÞ

coshðknhÞ
cosðknxÞFnðtÞ (3.1)

and surface elevation,

zðx; tÞ ¼
X1
n¼1

cosðknxÞZnðtÞ; (3.2)

where the wave numbers are kn ¼ pn=b: The mean fluid level z ¼ 0 is used to approximate the upper boundary of the

fluid domain and the velocity potential is expressed via the surface elevation as @fðx; 0; tÞ=@z ¼ @zðtÞ=@t: For the
individual components, we have

FnðtÞ ¼
g

o2
n

Z0nðtÞ;

where on is the natural frequency of the nth sloshing mode, satisfying the linear dispersion relation o2
n ¼ gkn tanhðknhÞ:

Thus, the amplitudes of linear components of the surface elevation ZnðtÞ completely describe the linear motion of the

fluid in the tank and can be used as a set of the generalized coordinates. For a coupled motion of the tank and the single

degree-of-freedom structure, one more coordinate is introduced, which is the tank displacement with respect to the

structural displacement X ðtÞ: The kinetic energy of the system is

T ¼
r
2

Z b

0

Z 0

�h

@f
@x
þ X 0ðtÞ

� �2
þ

@f
@z

� �2 !
dxdzþ

m

2
X 0ðtÞ2 (3.3)

and the potential energy of the system is

U ¼ rg

Z b

0

Z z

�h

zdxdzþ
k

2
X ðtÞ2; (3.4)

taking into account the orthogonal properties of the sloshing modes. Using generalized coordinates yields

T ¼
1

2
ðmþ rbhÞX 0ðtÞ2 � 2r

X1
n¼1

sinðpn=2Þ2

k2n
X 0ðtÞZ0nðtÞ þ

rgb

4

X1
n¼1

Z0nðtÞ
2

o2
n

; (3.5)

U ¼
rgb

4

X1
n¼1

ZnðtÞ
2
þ

k

2
X ðtÞ2: (3.6)

Now it is possible to construct the Lagrangian of the system in the form

Ls ¼ T �U þW ;

where W ¼ F ðtÞX ðtÞ is the work of the external force F acting on the structure. The evolution of the n-th generalized

coordinate is described by the Euler–Lagrange equations,

@

@t

@Ls

@ _un

�
@Ls

@un

¼ 0:



ARTICLE IN PRESS
J.B. Frandsen / Journal of Fluids and Structures 20 (2005) 309–329314
The coupled system equations can be written in the following form:

MX 00ðtÞ þ cX 0ðtÞ þ kX ðtÞ � 2r
P1
n¼1

sinðpn=2Þ2

k2n
Z00nðtÞ ¼ FðtÞ;

rgb
2o2

n
Z00nðtÞ þ

rgb
2

ZnðtÞ � 2r
sinðpn=2Þ2

k2n
X 00ðtÞ ¼ 0; n ¼ 1; 2 . . . ;

(3.7)

where M ¼ mþ rbh is the total mass of the system, i.e., m is the structural mass and rbh represents the mass of the

liquid. The coefficient sinðpn=2Þ2 ¼ 1 for odd n and 0 for even n. This means that only odd (antisymmetric) modes

interact with the structure.

Next, all functions are represented in the following nondimensional forms:

F ðtÞ ¼ AF f ðotÞ; ZnðtÞ ¼ aðh=bÞSnðoctÞ; X ðtÞ ¼ aS0ðoctÞ;

where AF and o are the amplitude and frequency of the external force, oc is a characteristic frequency, and a ¼

AF=ðMocÞ is the characteristic amplitude of the motion. Also, the nondimensional time t ¼ oct and the

nondimensional frequencies O ¼ o=oc are introduced. Taking into account only the odd sloshing modes, the

equations of motion become

S000ðtÞ � 2m
P1
n¼1

S002n�1ðtÞ
p2ð2n�1Þ2

þ O2
0S0ðtÞ ¼ f ðOtÞ;

S00nðtÞ � 4RnS000ðtÞ þ O2
nSnðtÞ ¼ 0; n ¼ 1; 3; 5 . . . ;

(3.8)

where m ¼ rbh=M is the mass ratio between fluid and structure, o0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
k=M

p
is the natural frequency of

the structure with nonmoving liquid, Rn ¼ ðtanhðpnHÞÞ=ðpnHÞ; and H ¼ h=b: Further, observe that the

system behavior depends on a few nondimensional parameters: the mass ratio m; the tank relative depth H, the

structural natural frequency O0; and the set of tank sloshing frequencies On: The nondimensional sloshing

frequencies satisfy the following nondimensional dispersion relation On ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn tanhðpnHÞ

p
=Fr; where Fr ¼ oc

ffiffiffiffiffiffiffiffi
b=g

p
is the Froude number.

Some remarks about the system behavior can be made already from reading the terms of Eqs. (3.8). The first

equation describes the motion of the structure with the natural frequency O0 subjected to the external force

f which is affected by the fluid motion in the tank. Each term of the sum represents the force applied to the structure by

the nth tank sloshing mode. The equations describe the evolution of the individual sloshing modes with the

natural frequencies On excited by the motion of the structure, as represented by the second term of each

of these equations. These terms are proportional to the coefficients Rn; referred to as ‘‘receptivity coefficients’’

expressing the excitation sensitivity of each mode. The modes with higher receptivity are excited more easily

by the structural motion. For a given tank geometry, the receptivity decreases for the higher modes. It should also be

noted that Rn for each n grows as the relative depth H becomes smaller and reaches its maximum for H ! 0:
The influence of the sloshing motion in the tank to the motion of the structure is proportional to the mass

ratio m and decreases as fast as 1=n2 for higher modes. Further, note that, if m! 0; the second term of the first equation

in (3.8) becomes negligible, which means that there is no interaction between the tank and the structure. The

equation can then be integrated separately to estimate the structural motion S0ðtÞ: The second equation in (3.8) then
describes the evolution of the sloshing modes in the tank moving with the prescribed horizontal acceleration

S000ðtÞ: The coupled natural frequencies for this noninteracting system are equal to the structural natural

frequency O0 and the tank sloshing frequencies On with small corrections of order of m: However, if one of the
sloshing frequencies is close to the natural frequency of the structure, then free structural oscillations will lead to an

increase of the amplitude of the corresponding sloshing mode. Eventually, this mode will start to interact with the

structure, which will result in a change of the natural frequencies of the coupled system. Thus, certain regions of

resonant interaction exist where the strong interaction between the structure and one of the sloshing modes takes place

even for small values of m: The difference between the actual value of the natural frequency of the coupled system and its

value for the corresponding noninteractingsystem can be used as a measure of the efficiency of the interaction. This will

be discussed further in the next section, where the properties of the natural frequencies of the coupled tank-structural

system are examined.
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4. The natural frequencies and interaction efficiency of the coupled system

The frequencies of free oscillations of a linear system are the imaginary parts of the eigenvalues of the corresponding

characteristic matrix of the system of Eqs. (3.8) given as

M ¼

l2 þ O2
0 �m 2l2

p212
�m 2l2

p232
� � �

�4l2R1 l2 þ O2
1 0 � � �

�4l2R3 0 l2 þ O2
3 � � �

..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA;

and its eigenvalues l can be found from

detðMÞ ¼ ðl2 þ O2
0Þ
Y
nodd

ðl2 þ O2
nÞ � 8ml

4
X
nodd

Rn

p2n2
Y

koddan

ðl2 þ O2
kÞ ¼ 0; (4.1)

where the indexes take only odd values. Taking the limit as m! 0; the asymptotic expansions for the eigenvalues are

l20 ¼ �O
2
0 þ 8mO

4
0

P
nodd

Rn

p2n2ðO2
n�O

2
0Þ
þ Oðm2Þ;

l2n ¼ �O
2
n þ m 8O4nRn

p2n2ðO2
0�O

2
nÞ
þ Oðm2Þ; n ¼ 1; 3; 5 . . . :

(4.2)

It can be observed that, in the case of small mass ratios, the eigenfrequencies of the system are equal to those

of the uncoupled tank and the structure with small corrections of the order of m due to the weak tank-structure

interaction. Further, expansions (4.2) become nonuniformly valid when one of the tank sloshing frequencies approach

the structural natural frequency (the corresponding term in the sum goes to infinity). Thus, strong interaction is

assumed between the structural motion and this sloshing mode when one of the sloshing frequencies is close enough to

the structural natural frequency. The corresponding eigenfrequencies in this case differ considerably from their

noninteracting values.

Now, assume that the nth sloshing frequency is close to the natural frequency of the structure, that is, O2
n � O2

0 ! 0 as

m! 0: For all other modes, the corresponding frequency difference is Oð1Þ and the characteristic Eq. (4.1), can be
divided by the product of ðO2

k � O2
0Þ; kan; yielding

ðl2 þ O2
0Þðl

2
þ O2

nÞ � ml4
8Rn

p2n2

� �
� 8ml4ðl2 þ O2

nÞ
X

koddan

Rk

p2k2ðl2 þ O2
kÞ
¼ 0:

The terms in brackets correspond to the structure interaction with the nth tank sloshing mode, and the

following term describes the influence of all other modes. If strong interaction between the structure

and the nth sloshing mode exists, the two terms in the brackets should have the same order of magnitude.

This is the case when l2 � O2
0  l2 � O2

n 
ffiffiffi
m
p

as m! 0; which means that O2
0 � O2

n 
ffiffiffi
m
p

in the interaction region.

The magnitude of the term in the brackets, i.e., the measure of the interaction, has the order of
ffiffiffi
m
p

: The next term
Oðm3=2Þ is much smaller. Thus, when the order of the magnitude of the difference between the square of the structural
natural frequency and the square of the nth sloshing frequency becomes as small as

ffiffiffi
m
p

; then a strong interaction
between the corresponding modes takes place. The motion in this region is the motion of the structure coupled with the

tank with only one dominating sloshing mode. The influence of all other tank sloshing modes is small. Taking into

account all orders of magnitude discussed above, the characteristic equation inside the nth interaction region can be

rewritten as

l2 þ O2
0 � 8mO

4
0

X
koddan

Rk

p2k2ðO2
0 þ O2

kÞ
þ Oðm3=2Þ

" #( )
ðl2 þ O2

nÞ � ml4
8Rn

p2n2
¼ 0:

The influence of noninteracting modes is equivalent to a small correction of the structural natural frequency.

This can be taken into account by introducing an ‘‘effective’’ structural frequency ~O0 inside each of the

interaction regions. The approximate formula to estimate the linear eigenvalues including mode interaction can be

expressed as

l20;n ¼ �
p2n2ð ~O

2

0 þ O2
nÞ

2p2n2 � 16mRn

�
pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2n2ð ~O

2

0 � O2
nÞ
2
þ 32mRn

~O
2

0O
2
n

q
2p2n2 � 16mRn

þ Oðm3=2Þ; (4.3)



ARTICLE IN PRESS

�2 /�
12

�0
2/�1

2

−�1
2/�1

2

−�3
2/�1

2

−�5
2/�1

2

−�0
2/�1

2

 

 

 

 

0 1 2 3 4 5 6 7

 −1

−2

−3

−4

−5

−6

−7

n = 5

n = 3

n = 1
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where the effective structural frequency inside the nth interaction region is

~O
2

0 ¼ O2
0 � 8mO

4
0

X
koddan

Rk

p2k2ðO2
0 þ O2

kÞ
:

If weak interaction exists, Eqs. (4.2) can be used to estimate all other eigenvalues. Fig. 2 shows a very good agreement

between the exact (from (4.1)) and the approximate eigenvalues (the example related to a mass ratio m ¼ 0:1).
Although the present work builds on a potential solver and therefore strictly can only be used for frequency

predictions, it is still important to estimate if the TLD would operate effectively. In the following, tank efficiency is

discussed in relation to the strongest linear interaction between the tank and the structure. The strongest interaction

takes place for the first sloshing mode, and the strength of the interaction decays fast ð1=n2Þ when n increases. Thus, the

system should be tuned to work within the first interaction region. First, the tuning ratio OT
1 ¼ O1=O0 should be chosen

from the condition of minimal difference between the two closest eigenfrequencies. From (4.3) it can be found that the

difference jl0j � jl1j has the minimal absolute value when

OT
1 ¼ 1�

4m
p2

R1 þ
X

kodda1

Rk

k2k � 1

 !
þ Oðm2Þ; (4.4)

where kn ¼ on=o1: After specifying the tuning ratio, the parameter

Eff ¼
miniajðjlij � jljjÞ

2

O2
0

is evaluated, which is a measure of the tank efficiency. The tank–structure interaction is more intensive for higher Eff ;
and its value can be estimated by

Eff ¼
8m
p2

R1 �
X

kodda1

Rk

k2k � 1

 !
þ Oðm2Þ; (4.5)

where the first term in the bracket of (4.5) is due to the main interaction mode. The infinite sum accounts for small

contributions from all other modes. As a first approximation, one can use the first term only (R1). Thus, one can

maximize the product m� R1: For a fixed mass ratio, m this gives the maximum efficiency which is achieved for

relatively small water depth (R1 grows when H ¼ h=b decreases). This is still true when accounting for all other modes
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but the efficiency reduces as these higher modes extract energy from the main most effective interaction (Fig. 3). In

summary, in the context of TLD design, it becomes important to provide the tuning ratio, Eq. (4.4), and maximize the

efficiency parameter, Eq. (4.5). The design process is usually restricted by fluid mass limitation and tank size. From a

practical view point the Eff parameter can be used as a guide but is not very informative because the tuning ratio vary

for different tanks. The problem is, for a given structural frequency and choosing OT
1 ; Eq. (4.4), one automatically

selects the tank depth H ¼ h=b: Therefore, there are not many parameters left for optimization.
Although the present paper does not involve the use of multiple tanks, it should be mentioned that multiple tanks can

be designed to provide higher flexibility in the optimization process. The multiple tanks with identical geometric

parameters can easily be taken into account by using the value Nr as a density, where N denotes number of tanks. The

mass ratio is then m ¼ Nrbh=M: For a given mass ratio, the efficiency of a multiple tank-structural system is higher

than the efficiency of a single tank system. For a given structure with prescribed mass ratio and structural stiffness

(O0 ¼ const; m ¼ const), the tuning condition O1 ¼ OT
1 O0 leads to the following approximate relation between N and H:ffiffiffiffiffiffiffiffi

NH
p

tanhðpHÞ � const: Thus, the value of H is smaller for a larger number of tanks N and, as a result, higher tank

receptivity and higher value of the product mR1 in (4.5) exist, and therefore higher efficiency. However, for a large

number of tanks N, these arguments are not valid when H becomes too small, and viscous and nonlinear shallow water

effects begin to play an important role. This is also true for a single tank.

For the reasons given above, optimum TLD-structural systems are herein discussed in terms of (1) shift in the system

eigenfrequency (Dlmin ¼j l0 � ln j) relative to the structural natural frequency with nonmoving liquid, and (2) the

reduction of the system response, X, due to the liquid sloshing. However, it should be mentioned that the performance

of a TLD depends on its own inherent damping and would be necessary to estimate for optimal TLD performance. The

literature does not offer any practical TLD rules; however, Luft (1979) and Den Hartog (1984) provide useful rules for

optimum tuning and inherent damping values in relation to linear TMD performance.
5. Numerical model for nonlinear tank–structure interaction

This study presents a fully nonlinear coupled free-surface structural model. The fluid motion is described by

nonlinear potential flow equations allowing steep nonoverturning waves to be captured. Two-dimensional solutions are

obtained using a finite-difference time-stepping scheme on adaptively mapped grids. The fluid model is coupled to an

elastic support structure, and extends the pure tank sloshing studies of Frandsen (2004). To the best knowledge of the

author, this type of model has not been developed for investigations of TLD performance.

The sloshing standing waves are modeled applying a modified s-transformation which is used to map the liquid
domain onto a rectangle, such that the moving free surface in the physical plane becomes a fixed line in the mapped

computational domain. The s-transformation was first used by Phillips (1957) in connection with numerical weather
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forecasting schemes. Later the sigma coordinate system was used by Mellor and Blumberg (1985) for ocean modeling to

improve predictions of instabilities in boundary layers. More recently Chern and Borthwick (1999) use a Chebyshev

expansion to discretize the s-transformed potential flow equation in their prediction of 2-D nonlinear free-surface

motions. The latest model in the literature is described by Turnbull et al. (2003) who simulated inviscid free-surface

wave motions using a s-transformed 2-D finite element model.

Fig. 4 illustrates the effect of the mapping in the present tank–structural model. The fluid model has been designed so

that each computational cell in the transformed domain is of unit size. This is the modified s-transformation. In this
model, remeshing due to the moving free-surface is avoided. Other advantages are that the mapping implicitly deals

with the free-surface motion, and avoids the need to calculate the free-surface velocity components explicitly.

Extrapolations are unnecessary, and so free-surface smoothing by means of a spatial filter is not required for the results

presented here.

The following is the formulation in dimensional format. With reference to Fig. 4, the mappings from the physical

ðx; z; tÞ domain to the transformed ðX ; s; tÞ domain are given by

x !X ; X ¼ m1 þ
ðm2 �m1Þ

b
x; t !T ; T ¼ t;

z !s; s ¼ n1 þ
ðn2 � n1Þðzþ hÞ

Ht

; (5.1)

where Ht ¼ zþ h; the wave amplitude is z; the still water depth is h, and b is the tank width. The grid size spans from m1

to m2 in the horizontal x-direction and n1 to n2 in vertical z-direction.

The derivatives of the potential function fðx; z; tÞ are transformed with respect to x, z and t into derivatives of

FðX ; s;TÞ:
The first derivatives of the velocity potential, f; are obtained as

@f
@x
¼
ðm2 �m1Þ

b

@F
@X
þ

a
Ht

@F
@s

� �
;

@f
@z
¼
ðn2 � n1Þ

Ht

@F
@s

;
@f
@t
¼

@F
@T
þ

g
Ht

@F
@s

; (5.2)

where a ¼ �ðs� n1Þð@z=@X Þ and g ¼ �ðs� n1Þð@z=@TÞ:
Similarly, Laplace’s equation can be rewritten as

@2F
@X 2
þ

1

Ht

@a
@X
�
2a
Ht

@Ht

@X

� �
@F
@s
þ 2

a
Ht

@2F
@s@X

þ
a2

H2
t

þ
b2ðn2 � n1Þ

2

H2
t ðm2 �m1Þ

2

" #
@2F
@s2
¼ 0: (5.3)

The fixed vertical wall boundary condition on X ¼ m1;m2 and the flat bed boundary condition on s ¼ n1 become

@F
@X
¼ �

a
Ht

@F
@s

;
ðn2 � n1Þ

Ht

@F
@s
¼ 0: (5.4)
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The kinematic free-surface boundary condition on s ¼ n2 becomes

@z
@T
¼
ðn2 � n1Þ

Ht

@F
@s

1þ
ðm2 �m1Þ

2

b2
@z
@X

� �2" #
�
ðm2 �m1Þ

2

b2
@z
@X

@F
@X

: (5.5)

The dynamic free-surface boundary condition on s ¼ n2 becomes

@F
@T
¼
ðn2 � n1Þ

Ht

@z
@T

@F
@s
�
1

2

ðm2 �m1Þ
2

b2
@F
@X
�
ðn2 � n1Þ

Ht

@z
@X

@F
@s

� �2"

þ
ðn2 � n1Þ

2

H2
t

@F
@s

� �2#
� gz�

X �m1

m2 �m1

� �
bX 00ðTÞ; ð5:6Þ

where g denotes acceleration due to gravity and X 00ðTÞ is the horizontal acceleration of the tank generated by the

structural motion, given as

X 00ðTÞ ¼
1

mþ rbHt

½F ðTÞ þ FI ðTÞ � cX 0ðTÞ � kX ðTÞÞ�; (5.7)

in which F ðTÞ is the external force and the internal force generated due to the sloshing motion is

FI ðTÞ ¼
1

2
rgðzð0;TÞ2 � zðb;TÞ2Þ

þ r
Z s¼n2

s¼n1

@F
@T
þ

g
Ht

@F
@s
þ
1

2

ðm2 �m1Þ

b

@F
@X
þ

a
Ht

� �� �2"

þ
1

2

ðn2 � n1Þ

Ht

@F
@s

� �2#
Ht

n2 � n1
ds
����
X¼m2

X¼m1

: ð5:8Þ

Eqs. (5.3)–(5.6) are then discretized using the second-order Adams–Bashforth scheme and are solved in the transformed

domain iteratively using successive over-relaxation.
6. Case studies

The linear structural and nonlinear fluid equations are solved simultaneously to predict free-surface motions and

their effect on the frequencies of the coupled system for small to steep amplitude waves. Herein, the prescribed

harmonic forced motion of F̂ ðt̂Þ ¼ ÂF cosðôt̂Þ where the dimensional parameter ÂF denotes the horizontal forcing

amplitude of the external force, t̂ is time and ô is the angular frequency of forced horizontal motion. Initially, the fluid

in the tank and the structure is at rest and the initial acceleration at t̂ ¼ 0 is due to the external force only. The system

and the free-surface motions are numerically examined at resonance and off resonance.

The effect of the liquid sloshing on the structural motion is demonstrated by varying the tank size b=h; the fluid-to-
structure mass ratio m; and the tuning ratio relative to the structure OT

n ¼ ôn=ô0 where ô0 is the first natural structural

frequency and ôn is the sloshing frequency of mode n. The free-surface behavior is investigated by varying the external

forcing amplitude through the forcing parameter � ¼ ÂF=ðr̂ĝĥ
2
Þ: As mentioned in Section 4, an optimum TLD-

structural system is identified through the interaction efficiency with respect to (i) the shift in system eigenfrequency

(Dlmin ¼j l0 � ln j) relative to the structural natural frequency with nonmoving liquid, and (ii) the reduction of the

system response, X, due to the liquid sloshing. The fully nonlinear predictions are compared with the first-order

potential flow structural solution, presented in Section 3. All results are presented in dimensionless format and hats

denote dimensional parameters. The system displacements and free surface elevations are nondimensionalized by

ðr̂ĝĥÞ=ÂF :The time histories of the forced sloshing motions are presented in nondimensional form using the first

sloshing frequency (ô1), so that the nondimensional time t ¼ ô1 t̂; and the nondimensional time step Dt ¼ ô1Dt̂:
In the first test series, b=h ¼ 2 and m ¼ 0:01 and the tuning ratio OT

1 ¼ 1 are kept constant while the forcing amplitude

is varied. A nondimensional time step of 0.011 and a grid size of 60�60 were used. Fig. 5 shows the free surface z and
system displacement X time histories for small forcing amplitude (� ¼ 0:0001). Exact agreement between the numerical
and first-order potential solution is found, as expected. In the test cases of Figs. 6 and 7, the forcing amplitude is

increased both at and outside the resonance region where the forcing frequency ratio is defined as b ¼ ô=ô0: Outside
the resonance region (b ¼ 0:67), the numerical solutions with moderate and steep solutions (� ¼ 0:102; 0:204) agree well
with the linear solution. At resonance (b ¼ 0:97), the free-surface amplitudes grow as time evolves, the numerical peaks
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solution.
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Fig. 5. System displacement, X, and free-surface elevation ðn ¼ 1Þ at the left wall, z: Resonance case (b ¼ 0:968) for m ¼ 0:01; OT
1 ¼ 1;

b=h ¼ 2; Dt ¼ 0:011 and grid: 60� 60: —, Numerical solution (� ¼ 0:0001); � �; linear solution.
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Fig. 7. System displacement, X, and free-surface elevation ðn ¼ 1Þ at the left wall, z: Resonance case (b ¼ 0:968) for m ¼ 0:01; OT
1 ¼ 1;

b=h ¼ 2; Dt ¼ 0:011 and grid: 60� 60: � � �; Numerical solution (� ¼ 0:204); —, Numerical solution (� ¼ 0:102); � �; linear solution.
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are larger and the troughs become lower as time evolves compared to the linear solution (typical nonlinear effects). In

the test cases involving � ¼ 0:102; 0:204; nonlinearities were found to reduce the system displacement significantly, e.g.,

system resonance shifted to beating response (� ¼ 0:204), compared to growing linear amplitude predictions. However,
no shift in system frequencies was observed. Further, the wave steepness, defined as S ¼ knẑ ¼ 1:2; 0:64 (where kn ¼

np=b̂ is the wavenumber), respectively, versus the wave steepness of 0.0004 of the linear case. Also, this particular tank

aspect ratio (b=h ¼ 2) has a water depth above the critical water depth, defined as ĥc=l̂w ¼ 0:162 (Gu et al., 1988) where
l̂w ¼ 2b̂=n denotes the wavelength. The b=h ¼ 2 is a deep water case as k1ĥ4p=2: Note in an uncoupled system the

liquid is known to exhibit softening spring behavior whereas the coupled system shows increasing amplitudes with
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respect to linearly predicted frequencies (as discussed later, e.g., Fig. 11). Also vice versa, liquid behavior in shallow

water (knĥop=10) in an uncoupled system typically exhibits hardening spring behavior [e.g., Lepelletier and Raichlen

(1988)], i.e., increasing amplitude with increasing frequency, that is, the maximum response is expected to occur at a

higher frequency compared to the linear solution. The phase plane diagrams in Fig. 8 show more clearly the nonlinear

solution at resonance for � ¼ 0:204 versus outside resonance behavior. The small amplitude wave phase-plane plot
displays linear behavior of periodic beating in closed orbits with symmetry of peaks and troughs. The resonance case

displays nonrepeatable nonclosed orbits in a stable system showing free-surface behavior typical of nonlinear systems.

Note, that the velocity, @z=@t; is nondimensionalized with aco1 where ac ¼ ÂF=ðM̂ô1Þ:
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Fig. 11. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for m ¼ 0:01; OT
1 ¼ 1 and

b=h ¼ 2:—, numerical solution (� ¼ 0:102); �-�; numerical solution (� ¼ 0:0001); � �; linear solution; � � �; structure with nonmoving
liquid.
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Fig. 12. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for m ¼ 0:01; � ¼ 0:102;
OT
1 ¼ 0:95 and b=h ¼ 2: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.

Table 1

Mass ratios and structural properties for b=h ¼ 2; 4; 8 (ĥ ¼ 1m)

m 0.005 0.01 0.02

M 402 202 102

k 579.03 290.96 146.92

c 1.25 0.63 0.32
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Fig. 13. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for m ¼ 0:01; � ¼ 0:102;
OT
1 ¼ 0:6 and b=h ¼ 4: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.
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Fig. 14. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for m ¼ 0:01; � ¼ 0:102;
OT
1 ¼ 0:3 and b=h ¼ 8: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.
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Fig. 15. Numerical solution. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for
m ¼ 0:01 and � ¼ 0:102: —, b=h ¼ 2 (OT

1 ¼ 1); � � � � �; b=h ¼ 4 (OT
1 ¼ 0:6); � � �; b=h ¼ 8 (OT

1 ¼ 0:3).
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The next numerical tests carried out are designed to check the sensitivity of the numerical scheme to the time step, the

grid resolution and associated nonlinear solutions. Figs. 9 and 10 show wave profiles along the tank at two different

times for the first sloshing mode (n ¼ 1) at and outside resonance. Results for different grid resolutions are shown

related to moderate and steep wave amplitude (� 2 ½0:102; 0:306�) for time steps of Dt ¼ 0:011 and 0.006. Increasing the
grid points in vertical direction was found to be more effective in improving accuracy than increasing the grid points in

the horizontal direction. This was also found in the pure sloshing studies of Frandsen (2004). It was found that a grid

size of 40� 60 and a time step of 0.011 provided sufficient accuracy to capture nonlinearities related to steep wave

predictions (�40:1) outside resonance regions. At and near resonance the grid resolution needed to be increased to
60� 60 and the time step reduced to 0.006.

In the second test series, b=h ¼ 2 and m ¼ 0:01 are kept constant while the tuning ratio OT
1 is varied relative to the first

sloshing frequency (ô1). In all outside resonance cases, a grid size of 60� 60 and Dt ¼ 0:011 were used whereas a time
step of 0.006 was prescribed at and near resonance to maintain accuracy. Figs. 11 and 12 show the dimensionless

amplitude response curves for the system (X) and for the free surface (z) as a function of the forcing frequency ratio b
for OT

1 ¼ 0:95; 1: Note two distinct eigenfrequencies in the coupled system exist. For example the test case with b=h ¼ 2

and OT
1 ¼ 1 (Fig. 11), displays eigenfrequencies l1 ¼ 0:97 and l3 ¼ 1:03: The largest sloshing motion exists at l1 ¼ 0:97

and this motion results in maximum reduction of the structural response. This is also true at the second system

frequency l3 ¼ 1:03; but the reduction of the response at the higher mode is less, as expected. In general, good

agreement in system eigenfrequencies is found between the fully nonlinear and first-order solution. As mentioned, the
Table 2

System eigenfrequencies for m ¼ 0:01 and b=h ¼ 2; 4; 8 (ĥ ¼ 1m)

b=h 2 4 8

OT
1

1 0.6 0.3

Fr 1.7 1.4 1.0

R1 0.58 0.83 0.95

l1 0.968 0.598 0.826

l3 1.031 1.0 1.0

l5 — 1.266 1.146

O2
0 � O2

1
0 1.8 10.0

E1
ff =m 0.47 0.67 0.77
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Fig. 16. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for � ¼ 0:102; b=h ¼ 2;
OT
1 ¼ 1 and m ¼ 0:005: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.
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Fig. 18. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for � ¼ 0:102; b=h ¼ 4;
OT
1 ¼ 0:6 and m ¼ 0:005: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.
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Fig. 17. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for � ¼ 0:102; b=h ¼ 2;
OT
1 ¼ 1 and m ¼ 0:02: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.
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Fig. 19. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for � ¼ 0:102; b=h ¼ 4;
OT
1 ¼ 0:6 and m ¼ 0:02: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.

J.B. Frandsen / Journal of Fluids and Structures 20 (2005) 309–329 325



ARTICLE IN PRESS
J.B. Frandsen / Journal of Fluids and Structures 20 (2005) 309–329326
current nonlinear solver cannot simulate overturning waves and therefore the importance of wave breaking effects on

system frequencies is not discussed herein. In the test series where OT
1 ¼ 1 (Fig. 11), the forcing parameter � 2

½0:0001; 0:204� is also varied to demonstrate the effect of nonlinear free-surface motion on system behavior. The large

sloshing motion with � ¼ 0:102 and 0.204 results in a decrease in system displacement compared to the linear solution

which exhibits growing amplitudes in time (see also Fig. 7)and has equal magnitude displacements at each of the

eigenfrequencies. In other words, the solution of the linear system displacement is overpredicted due to underpredicted

free surface elevations at and near l1: This is also the case for OT
1 ¼ 0:95 (Fig. 12). However, note that the O

T
1 ¼ 1 test

(Fig. 11) has a maximum displacement smaller than the maximum displacement of the OT
1 ¼ 0:95 case, although Dlmin

is smaller compared to OT
1 ¼ 1: Therefore, the O

T
1 ¼ 1 case is more efficient due to larger sloshing motions.

In the third test series, the fluid-to-structure mass ratio m ¼ 0:01 and the forcing parameter � ¼ 0:102 are kept
constant while the tank size is varied (b=h ¼ 4; 8 where ĥ ¼ 1m). These tank aspect ratios relate to intermediate

(p=10ok1ĥ ¼ 0:79op=2) and near shallow water (k1ĥ ¼ 0:39) cases. The dimensionless parameters of the case studies
are listed in Table 1. A grid size of 60� 60 and Dt ¼ 0:011 were used in all cases of the third test series. Figs. 13 and 14
show the dimensionless amplitude response curves of the system displacement (X) and the free-surface elevation (z) as a
function of the forcing frequency ratio b: For these tank aspect ratios, the sloshing motion has negligible effect on the
structural response. In general, there is good agreement between the numerical and first-order eigenfrequencies. The

first-order solution displays similar fluid–structure interaction effects as the fully nonlinear model for forcing eo0:102:
As mentioned, the strongest interaction effect is found when ô1 is closest to ô0: It can be observed that the b=h ¼ 4; 8
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Fig. 20. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for � ¼ 0:102; b=h ¼ 8;
OT
1 ¼ 0:3 and m ¼ 0:005: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.
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Fig. 21. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for � ¼ 0:102; b=h ¼ 8;
OT
1 ¼ 0:3 and m ¼ 0:02: —, numerical solution; � �; linear solution; � � �; structure with nonmoving liquid.
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cases do not exhibit strong interaction as the eigenfrequencies are too far from the eigenfrequency of the structure (with

nonmoving liquid). In other words, there is simply not enough energy in the sloshing motion to shift the system

frequency. As a result, we therefore have one distinct frequency of the coupled system. This is also clearly demonstrated

in Fig. 15 which shows the b=h ¼ 4; 8 response casesrelative to the stronger interaction test case of b=h ¼ 2: The
associated system eigenfrequencies are listed in Table 2. The efficiency parameter (4.5) has also been estimated (based

on the first mode only). It is largest for b=h ¼ 8: However, the tuning ratio is also furthest away from the first natural

frequency of the structure and, as a result, is not the optimum solution. Furthermore, it should be noted that changing

the tank width means that the sloshing frequency of the water changes simultaneously. The natural frequency of the

structure was kept constant. Choosing different structures should of course be done in the process of identifying an

optimum coupled system. This would also provide an improved insight into the b=h parameter effects on the TLD

performance. However, the structure in these studies has a natural frequency of 0.6Hz and represents well a generic

slender structure.

In the fourth test series, the mass ratio is varied. Figs. 16–21 show the response curves for m ¼ 0:005; 0:02 for the tank
sizes b=h ¼ 2; 4; 8: System eigenfrequencies were similar to those listed in Table 2. Also similar findings were observed

compared to m ¼ 0:01 for b=h ¼ 2; 4; 8: The tank size of b=h ¼ 2 still displays the strongest interaction effects

(Dlmin ¼ 0:03) with b=h ¼ 4; 8 showing negligible effects (Dlmin ¼ 0:40; 0:17). But more water (m ¼ 0:02) does help in
increasing efficiency of the fluid-structure interaction, as expected. This can also be observed when comparing Figs. 22

and 23 which show direct comparisons between b=h and m:
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Fig. 23. Numerical solution. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for
m ¼ 0:02 and � ¼ 0:102: —, b=h ¼ 2 (OT

1 ¼ 1); � � � � �; b=h ¼ 4 (OT
1 ¼ 0:6); � � �; b=h ¼ 8 (OT

1 ¼ 0:3).
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Fig. 22. Numerical solution. System displacement, X, and free-surface elevation at the left wall, z; versus forcing frequency, b; for
m ¼ 0:005 and � ¼ 0:102: —, b=h ¼ 2 (OT

1 ¼ 1); � � � � �; b=h ¼ 4 (OT
1 ¼ 0:6); � � �; b=h ¼ 8 (OT

1 ¼ 0:3).
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Finally, the numerical data point of the response curves (Figs. 11–23) at and near resonance represents maximum

values based on the t ¼ 750 time series, and outside resonance approximate t ¼ 190 time series. Resonance points took
an average of 36 hours on a single Pentium 3GHz processor whereas the data point outside resonance were generated

during 12 h real time.
7. Conclusions

The numerical predictions showed that the coupling of a liquid storage tank to a structure can change the behavior of

the structure considerably. Conversely, the structural movements also affect the motion of liquid. Optimum TLD-

structural systems are herein discussed in terms of (i) shift in system eigenfrequency of the dominating sloshing mode

relative to the structural natural frequency with nonmoving liquid, and (ii) the reduction of the system response, X, due

to the liquid sloshing. However, it should be mentioned that the performance of a TLD also depends on its own

inherent damping and would be necessary to estimate for optimal TLD performance. This paper does not include a

discussion on the damping contribution of the liquid nor the effects of wave breaking due to limitation of the potential

flow solver.

Typically, an effective tank-structural system (e.g., h=b ¼ 0:5) displayed two distinct frequencies on the system

displacement curves with reduced response, especially at the first system eigenfrequency, due to large sloshing motion.

The coupled system behaved in an optimized manner with regard to structural response reduction when one dominating

sloshing frequency was near the structural frequency. The influence of the tank sloshing motion of mode n to the

structural motion is proportional to the mass ratio between fluid and structure and decreases with 1=n2 for higher

modes. Inclusion of higher modes reduces the efficiency of the TLD. The eigenfrequencies differ considerably from their

noninteracting values. The hardening or softening spring behavior of the fluid, known to be present in solutions of pure

sloshing motion in tanks, does not exists in the coupled system response.

The parametric studies in which tank aspect ratio, h=b (deep to near shallow water), fluid-to-structural mass and

tuning ratio, were varied showed good agreement between numerical and linear solutions for forcing amplitude

(�o0:1). For large sloshing motions (�40:1) and in the case of strong interaction (h=b ¼ 0:5), the coupled natural
frequencies predicted by the linear and nonlinear model agreed well for small to steep waves. However, the linearly

predicted system displacements were overpredicted due to the under-estimated free-surface elevations compared to the

fully nonlinear predictions. Therefore, the linear solution should only be used for predicting system eigenfrequencies.

The linear solution of the free surface is accurately predicting the structural and free-surface responses outside

resonance when the sloshing amplitudes are small. If strong interaction exists, large amplitude sloshing solutions are

generated and the fully nonlinear solution should be used for the evaluation of the TLD performance.

The numerical simulations presented provide indications that the s-transformed finite difference solver can give
helpful insight into TLD–structure interactions. Furthermore, nonlinear free-surface behavior plays an important role

in describing the performance of TLDs accurately. The present studies can easily be expanded to include multiple wave

tanks to investigate tank interaction effects, and thus cover suppression of a wider range of frequencies.
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